WiMAX stands for Worldwide Interoperability for Microwave Access. WiMAX technology enables ubiquitous delivery of wireless broadband service for fixed and/or mobile users, and became a reality in 2006 when Korea Telecom started the deployment of a 2.3 GHz version of mobile WiMAX service called WiBRO in the Seoul metropolitan area to offer high performance for data and video. In a recent market forecast published in April 2008, WiMAX Forum Subscriber and User Forecast Study, the WiMAX Forum projects a rather aggressive forecast of more than 133 million WiMAX users globally by 2012 (WiMAX Forum, 2008c). The WiMAX Forum also claims that there are more than 250 trials and deployments worldwide.
TheWiMAX Forum is an industry-led non-profit organization which, as of the 1st quarter of 2008, has more than 540 member companies including service providers, equipment vendors, chip vendors and content providers. Its primary mission is to ensure interoperability among IEEE 802.16 based products through its certification process. The air interface of WiMAX technology is based on the IEEE 802.16 standards. In particular, the current Mobile WiMAX technology is mainly based on the IEEE 802.16e amendment (IEEE, 2006a), approved by the IEEE in December 2005, which specifies the Orthogonal Frequency Division Multiple Access (OFDMA) air interface and provides support for mobility.
Wimax stands for Worldwide Interoperability for Microwave Access. Wimax technology is a telecommunications technology that offers transmission of wireless data via a number of transmission methods; such as portable or fully mobile internet access via point to multipoints links. The Wimax technology offers around 72 Mega Bits per second without any need for the cable infrastructure. Wimax technology is based on Standard that is IEEE 802.16, it usually also called as Broadband Wireless Access. WiMAX Forum created the name for Wimax technology that was formed in Mid June 2001 to encourage compliance and interoperability of the Wimax IEEE 802.16 standard. Wimax technology is actually based on the standards that making the possibility to delivery last mile broadband access as a substitute to conventional cable and DSL lines.
The backhaul of the Wimax (802.16) is based on the typical connection to the public wireless networks by using optical fibre, microwave link, cable or any other high speed connectivity. In few cases such as mesh networks, Point-to-Multi-Point (PMP) connectivity is also used as a backhaul. Ideally, Wimax (802.16) should use Point-to-Point antennas as a backhaul to join subscriber sites to each other and to base stations across long distance.
A wimax base station serves subscriber stations using Non-Line-of-Sight (NLOS) or LOS Point-to-Multi-Point connectivity; and this connection is referred to as the last mile communication. Ideally, Wimax (802.16) should use NLOS Point-to-Multi-Point antennas to connect residential or business subscribers to the Wimax Base Station (BS). A Subscriber Station (Wimax CPE) typically serves a building using wired or wireless LAN.
A wimax base station serves subscriber stations using Non-Line-of-Sight (NLOS) or LOS Point-to-Multi-Point connectivity; and this connection is referred to as the last mile communication. Ideally, Wimax (802.16) should use NLOS Point-to-Multi-Point antennas to connect residential or business subscribers to the Wimax Base Station (BS). A Subscriber Station (Wimax CPE) typically serves a building using wired or wireless LAN.
No comments:
Post a Comment